
Help for the AMT(P) App page 1 of 10

Audio to MIDI Translator (Polyphonic) Help AMT(P).app

Copyright © 2025 Jeff Whitehead Lutherie LLC JeffWhitehead.com

System Overview
The AMT(P) application is a polyphonic, audio to MIDI translator designed for instruments that use divided
pickups. A divided pickup is one that has a separate pickup for each string. The application is a companion to
the audio breakout boards designed by me, Jeff Whitehead, and published on my site, CoolLutherie.com, for
you to build. To use the system, the 13-pin DIN instrument cable that would normally plug into a hardware
synthesizer is, instead, plugged into the breakout board. Then, from the breakout board, an audio connection is
made for each string to the computer’s audio interface. The AMT(P) application reads the audio signal from
each string and translates the notes to MIDI values. Additionally, AMT(P) can transmit pitch bend and
modulation MIDI messages. For instruments that do not have divided pickups, AMT(P) can operate in mono
mode, reading a single audio input. However, this mode is not polyphonic.

Here is an interior view of an audio breakout board that
supports a guitar with a divided pickup such as the
Roland GK-3 or the Graph Tech Ghost system. There is
an option to connect to a hardware synthesizer in
parallel or to use it without the synthesizer by powering
the board with a 9 volt pedal board power supply.

Audio from each string is sent to a separate jack. Audio
from the guitar’s normal pickups is sent to its own jack.
The board shown here supports an additional audio
signal that can be achieved by hacking the GK’s OEM
pickup system, taking advantage of an unused
connection within the 13-pin DIN cable.

Here is a breakout board connected to a Behringer
ADAT. The ADAT provides an amplified audio input
for each string as well as the normal pickup and
can connect to an audio interface via an optical
connection. The breakout board shown here can
optionally support up to three hardware
synthesizers running in parallel with the audio
translation. Using an ADAT is a convenient method
for processing polyphonic audio without consuming
input jacks on the audio interface.

The breakout boards and AMT(P) application can also
support a violin with the Cantini ISSP2 Earphonic bridge.

Here is a Cantini-equipped fiddle connected to a
breakout board and a Roland GR-55 synthesizer.

There are numerous options for configuring an audio to
MIDI system that best suits your needs. I provide all of
the information as open source so that artists have the
freedom to create the most appropriate system. Go to
my site, CoolLutherie.com, to learn more.

Software version 1.1

https://JeffWhitehead.com
https://www.JeffWhitehead.com
https://cherryaudio.com
https://CoolLutherie.com
https://CoolLutherie.com
https://CoolLutherie.com

Help for the AMT(P) App page 2 of 10

Software Overview

With the instrument connected to an audio interface, either polyphonically via the breakout board as multiple
channels (one for each string, plus one for the normal pickups), or monophonically through a single channel,
the AMT(P) application will be able to read the audio channels and translate the inbound audio streams to MIDI
notes. It is important to set the audio preferences correctly and to tune each string’s input to match your
playing style. There are visual controls to assist you.

Translating stringed instrument audio to MIDI notes, accurately, is difficult. This is because the frequencies
generated by a vibrating string are complex. The software implements a variety of technical solutions to
achieve superior results, and it is helpful to understand some of the issues so that your playing can
complement them. First, and foremost, your instrument must be in tune. Being in tune dramatically reduces the
translation error rate. Secondly, while a string continues to ring, it is difficult to sense the attack of a new note.
So, strumming chords is pretty messy, but an articulated arpeggio is not. Hammer-ons are easy to sense, pull-
offs are not. The cleaner you play, the better the resulting translation.

For each string, there is a Gain setting and a Noise Cut setting. The higher the gain, the more sensitive the
translation; however, that also introduces noise to the signal which can slow the processing. The noise is
reduced by increasing the Noise Cut control. The blue LED will light when audio is being processed and the
green LED will light when a MIDI note is being sent. Every guitar and audio interface is different. So, it is
important to tune the application to each string for best results.

Translation occurs through digital sampling of the audio stream. Sampling rates of 44.1K and 48K are
supported. Anything higher than that will not work. Since the process is one of MIDI translation, high sampling
rates have no positive effect on the results anyway; therefore, you do not need an expensive audio interface to
have excellent results.

The audio interface is configured through a popup panel. A Sampling Rate of 48000, I/O Vector Size of 128,
and Signal Vector Size of 64 have worked well on Macs with Intel or M1 chip sets. It is important to have the
Scheduler in Overdrive. The Audio Interrupt is normally set to off. These settings will optimize the audio to MIDI
translation, reducing latency. To learn more about how Max runtime works, please refer to the documentation
by Cycling ‘74. (cycling74.com)

Every computer and audio interface will be different. Therefore, you will need to try different settings to
discover which are best for your system.

https://cherryaudio.com
https://cycling74.com

Help for the AMT(P) App page 3 of 10

Description of the Input and Output Controls

1: Audio Interface. Here, you set the audio interface
through which the guitar or violin audio signal is being
sent to the computer. The On button activates the audio
input and defaults the application to setting #1. The Open
Audio button enables you to configure the audio interface.

2: MIDI Out Settings. There are two drop-down menus
from which you can set the MIDI output controllers. The
app provides two of its own MIDI output controllers, “from
AMT(P) 1” and “from AMT(P) 2.” These are the
recommended controllers to use. If these controllers are
not visible in the menus, the Get Controllers button will
refresh the controller list from your computer. MIDI 2 with
MPE is sent through one controller, and MIDI version 1
through the other simultaneously. MIDI 2 with MPE will
result in superior note triggering due to the modern
protocol. MIDI 1 is available for software that does not
support MIDI 2 and is toggled off by default.

3: String Audio Controls. The audio input channel is
entered into the field. There are two adjustments
available for each string. Gain sets the inbound audio
level. Noise Cut sets a volume threshold for the system to
ignore inbound audio in order to eliminate false note
triggering. A string can have individual settings for
sustain, bending, and muting. These can also be turned
on and off through the global controls at the bottom.

4: Global settings. Minimum Velocity sets the minimum
MIDI velocity for every note being translated. The
Sustain, Bending, and Mute buttons affect all strings.

 Global MIDI messages MIDI Bend, Modulation and
Aftertouch are sent out when the sliders are moved. The
Mod controller number used is the standard, CC #1.

5: Settings. Up to three settings can be saved. To switch
settings, enter the number 1, 2 or 3 in the input field and
click the Select button. To save the current settings for the
app, click the Save button. The settings will be saved into
the setting number currently displayed. The instrument
toggle sets the app to guitar, violin, or mono mode. For
either instrument, the strings are calibrated to standard
tuning for audio to MIDI translation, which is the standard
for hardware guitar synthesizers. In mono mode, only one
audio interface is supported. This is to support
instruments without a divided pickup.

6: Mapping MIDI controls. An external controller (such as
a foot pedal) can be mapped to the app’s controls. Once
mapped, press the Escape key to leave the mapping
mode. Maps can be saved to, and recalled from, an
external file.

7: Network broadcast. Polyphonic data can be sent as
JSON across the network via UDP for integration with
other software.

2

6

4

3

7

1

5

https://cherryaudio.com

Help for the AMT(P) App page 4 of 10

Operating as a MIDI controller for software synthesizers
AMT(P).app becomes a MIDI controller in
your environment. For this example, I am
using Dreamsynth by Cherry Audio;
(cherryaudio.com) a gorgeous, polyphonic
synthesizer with multiple oscillators, analog
strings, MPE support and a host of features
that create a vast palette of tone.

Dreamsynth and other amazing synthesizers
are available as a downloads with a free trial
period from Cherry Audio. I encourage you to
explore the many fabulous presets that they
provide with each. The ability to play these
software instruments polyphonically with a
guitar or violin opens a completely new,
transformative, sonic landscape.

Configuration is simple. With AMT(P)
running, click the settings icon on the
Dreamsynth menu bar, then the Audio/MIDI

tab and activate the MIDI input that you selected for MIDI 2 output in AMT(P). Set the audio output in
Dreamsynth to your preferred settings. Note that the larger the audio buffer size, the greater the latency in
producing sound. So, the smallest setting without producing audible issues like pops and clicks is usually best.

Your guitar or violin will now perform as a MIDI controller for
Dreamsynth. In addition to playing notes, AMT(P) sends pitch
bend and modulation MIDI messages, just like a keyboard
controller. Therefore, the Bend and Mod sliders will interface
with a software synthesizer automatically. AMT(P) sends the
Mod message as CC #1, which is the standard MIDI value for a
modulation wheel.

If you wish to map a slider to additional controls within
Dreamsynth you can do so through a “MIDI Learn” process.

For example, to connect the Mod slider in AMT(P) to a knob in
Dreamsynth, control-click the knob and select “MIDI Learn”

from the pop-up menu. (This example will connect the phaser rate knob.)

The knob will be highlighted in a box, indicating that it is waiting for a MIDI signal. Then move the Mod slider in
AMT(P) to complete the connection.

Once learned, when you move the slider, you should observe that it controls the knob setting. To disconnect
the control, simply control-click the knob and select the option to “Unlearn.”

https://cherryaudio.com

Help for the AMT(P) App page 5 of 10

To enable MPE mode within Dreamsynth, from
Settings, select the Interface tab, then check the
box next to “Enable MPE mode.”

To adjust the pitch bend of the synthesizer to
match the guitar string’s bending range, click
MPE at the top menu to open the MPE side
panel. Then, check the box next to “Pitch Bend
Range” and set the value to 2.

String bending will now be possible for individual
notes being played by the polyphonic
synthesizer as well as globally from the Bend
slider control from AMT(P).

Global bending will affect all notes equally and
simultaneously.

Operating an AMT(P) control from another controller
Just like utilizing MIDI Learn within Dreamsynth, it can also be used within AMT(P) to allow control from
another MIDI device. For example, you might want to have a foot pedal from another controller move the Mod
slider that you just mapped to the Dreamsynth’s Phaser Rate knob.

Doing so is similar to the operations within Dreamsynth.

Click the “Map MIDI” button. The controls that can accept a MIDI mapping will be visible while everything else
will be disabled. Select the control to be mapped. In this example, that is the Mod slider. It will be highlighted in
a box to indicate it has been selected for MIDI learning.

Then, move the foot pedal (or whatever MIDI control you wish to
map) and you will see the slider respond and a small block will
appear on the slider indicating that it has been assigned to the
MIDI control.

Undoing the mapping is simple; with Map MIDI active, control-
click the slider and select “Delete Mapping.” You will see the
small block disappear and the mapping will be dropped.

To leave the MIDI mapping mode, press the Escape key.

Help for the AMT(P) App page 6 of 10

Using the Max Console to view MIDI output
Being a Max application, AMT(P) can take advantage of the real time signal processing and data display that
the Max environment provides. One of the most important utilities from Max is the Console. The Max Console
displays information in real time that the developer wishes to post. For AMT(P), that information is the MIDI 2
messages that are being sent from the application through the selected controller output.

These messages include notes on and
off with velocity and channel
information. Pitch bend and Mod
messages are also displayed.

If you are having difficulty integrating
with another MIDI application, it can be
helpful to see what is being sent out
from AMT(P) in real time.

If you are a visual artist, using the MIDI
messages to control live performances,
the console is a valuable tool to view
the actual data.

To launch the Max Console, from the
AMT(P) main menu, select “Window”
then “Max Console.”

To turn on the message output to the
console, click the Console On/Off
button.

About MIDI 2.0 and why it is important
Everything that you need to know about MIDI can be found at the association’s website midi.org. If you have
not yet joined the association, I encourage you to do so. It is free to join as an individual member, and there is
a wealth of information about the MIDI standard and the companies, products, and projects that are using it.

The reason that AMT(P) utilizes MIDI 2, apart from its being the latest specification, is that it offers the ability to
efficiently send detailed information about the note being played on a stringed instrument. Since it is possible
to play the same note on multiple strings, this information can be expressed as a sub-channel. In the screen
shot above, you can see a main channel of 1, followed by a sub-channel value for the string, then the control
information, note, and velocity within each message. With the older MIDI 1 specification, polyphony required a
separate main channel for each string which could confuse synthesizers while processing duplicate notes
coming from multiple channels. This problem of duplicate note processing would often lead to dropped notes
or, worse, notes that would never be turned off.

Better yet, MIDI 2 includes a new standard, MIDI Polyphonic Expression (MPE). This new messaging enables
the transmission of expressive controls for individual notes. For a guitar, that means that a pitch bend can be
associated with a particular note on a particular string in addition to pitch bending being associated with all
notes within the main channel. This is a fundamentally new capability.

There is a lot more to MIDI 2 and MPE. The electronic music industry is rapidly transforming because of it.

https://midi.org

Help for the AMT(P) App page 7 of 10

Recommended Practices for Optimal Performance
For accurate audio to MIDI translation, there are techniques for setting up the guitar or violin, the audio
interface, and the AMT(P) software to achieve optimal performance.

Before any other activity, ensure that your instrument is in tune. The AMT(P) app is sampling audio wave forms
from a stringed instrument that are very complex. A properly tuned instrument will contribute to accurate
translation with minimal latency.

The divided pickup, (a Roland GK-3 or a Graph Tech Ghost Hexpander for the guitar or the Cantini ISSP2 for
the violin), produces a relatively weak audio signal. Therefore, if you are not using a breakout board with
microphone preamps installed, it is important to boost the audio output of the divided pickup coming
through the breakout board in order to achieve enough of an audio signal to perform accurate audio to
MIDI translation. An audio interface with a separate volume control for each input will suffice, increasing the
volume of each string to a point just below clipping. Such inputs are usually microphone inputs on the audio
interface, ADAT, or mixing board. Some audio interfaces provide preamp controls with volume adjustment for
line inputs. These inputs will also work because they can boost the audio signal to a usable level. A line input
without amplification for the output of the divided pickup will not provide an adequate audio signal for accurate
MIDI translation.

Within the AMT(P) app, increasing the Gain control until the blue LED flashes while a note is not being played,
indicates the maximum acceptable input volume for the string. At that point, the app is reading only noise from
the audio signal and attempting to perform audio to MIDI note translation. Backing off the gain until the LED
goes off brings the signal below the noise threshold and to its most sensitive sampling state.

Playing a note on the selected string should trigger the blue LED. Depending upon your playing style, such as
finger picking versus using a plectrum or bowing, you may adjust the gain until the LED flashes at the moment
of attack. The illuminated LED indicates that there is audio signal available for translation. When the note is
actually being translated, the green LED will be illuminated.

After one string is set to the desired Gain level, move on to the next and continue until all strings indicate audio
to MIDI translation capability by way of the illuminated LED’s.

If a note on a string is being triggered while a different string is being played, then the Noise Cut control on the
string that is not being played may be increased to filter out the ambient noise. Between the adjustment of the
Gain and Noise Cut controls for each string, an optimal setting can be achieved for each string in accordance
with your playing style.

Sensing a duplicate note from a stringed instrument without creating false duplicate notes is a complicated
matter. Related in complexity is the ability to distinguish a sustained note from a re-triggered note. If you wish
to rapidly re-play a note, it is best to dampen the note when played so as to reduce the sustained vibrations.

Lastly, the global Minimum Velocity control sets the minimum MIDI note velocity for all notes being played. The
numeric value of the Minimum Velocity control is a MIDI note velocity, ranging from 0 to 127. Setting a high
value will result in stronger note attack by the MIDI instrument when the note is played. Some synthesizer
software is more responsive when the note velocity is higher.

After all settings have been made, it is important to save them. The input field for Settings accepts three
different settings. Click on the numeric field to enter the desired number, then drag your mouse up and down
over the displayed number, or type in the value to change it. While the Settings number within which you chose
to store your settings is displayed, click the Save button to save them to that Settings number. All of your global
and string settings will be saved within the app. To recall a Setting, enter the number to be retrieved and click
the Select button.

Note: If the MIDI controllers that are active on your computer change, the MIDI 1 and 2 controllers that you
saved may need to be re-selected when the app is re-launched. This is because the index value of the saved
controllers will no longer match the name of the controller you wish to be using. Click the Get Controllers
button to refresh the list, then reselect the controller that you wish to use.

Help for the AMT(P) App page 8 of 10

Network broadcasting of polyphonic data
TouchDesigner is a real time graphics design environment and display engine that is available to download
from derivative.ca. For integration with TouchDesigner, AMT(P) converts the polyphonic MIDI information to
JSON and transmits it over the network as a UDP broadcast. Within TouchDesigner, this JSON can be read in

real time and translated to data that manipulates visual
performances. TouchDesigner can be running on a Mac or Windows
computer within the same network.

If TouchDesigner and AMT(P) are running the same computer,
network broadcasting can be used to intercommunicate by entering
the computer’s local TCP/IP address: 127.0.0.1 and selecting a Port
value that is not in use by other applications. The default value for
the Port is 7000.

When the applications reside on separate machines, the network
TCP/IP Address and listening Port of the TouchDesigner computer
are set within both applications.

AMT(P) only broadcasts polyphonic data. When in Mono mode, the
network broadcasting will by turned off automatically.

A fully-functional TouchDesigner example is available at Cool
Lutherie. Drop the code into your own project, set the values for
Local Address and Port within the TouchDesigner “UDP In” object,
and your network will be instantly connected to AMT(P). If not, check
to ensure that the computers allow UDP. Sometimes a firewall rule
must be added.

A note-manipulated animation in TouchDesigner.

https://derivative.ca
https://CoolLutherie.com
https://CoolLutherie.com

Help for the AMT(P) App page 9 of 10

About the author, Jeff Whitehead (Jeff Whitehead Lutherie LLC)
I have been making stringed instruments for many years. It
started in my youth, along with an interest in electronics. During
my middle life, I was a software engineer and entrepreneur. So,
the natural progression was to bring instrument design and
computer processing together. This Audio to MIDI Translator
application is an important part of that journey, and I am
delighted to be able to share it with you.

My instruments are enjoyed by professional musicians,
collectors, and enthusiasts. Each is unique. My process involves
a lot of experimentation; something that I enjoy immensely. My
instruments can be viewed at JeffWhitehead.com.

To share the R&D experience that I have acquired through the years of instrument building and software
development, I created the site, CoolLutherie.com.

At Cool Lutherie, you may watch videos about this application and other projects that showcase fun and
interesting things in the world of electronic stringed instruments and computer
integration. From tshere, you can learn from, and download, helpful content. If
you do not yet have one, the most important project to go along with this software
is the audio breakout board. The audio
breakout board splits the analog output
from the 13-pin DIN cable to separate
audio jacks. This is the critical piece of
hardware to experience true, polyphonic
processing. I have designed a variety of
PCB’s to account for most applications.
These range from a simple board that
supports a single, 13-pin socket to a junction that can interconnect up to three
hardware synthesizers to run in parallel with the audio processing. These PCB’s
and other related parts can be purchased through Cool Lutherie. I publish all of

the designs so that you are free to make them yourself.

It is important to me that this information is provided as open source,
enabling you to create your own hardware and software to meet your
artistic needs. Therefore, this application and other projects that I
provide are done so under the Creative Commons licensing. This also
means that my work is supported by donations. So, if you find my
content helpful and interesting, please let me know by making your
donation at CoolLutherie.com. Your support is greatly appreciated!

The reason that I focused on MIDI integration with stringed instruments, in
the first place, was that I found hardware guitar synthesizers to be limited in
capability when compared to the exploding software market. I wanted a
simple, polyphonic interface that allowed me to use the cool stuff that was
being enjoyed by keyboard players. And… I wanted to develop something
that could be easily shared with other artists. So, I created this system.

Once you begin working with MIDI integration, new artistic opportunities
present themselves, such as MIDI-triggered visual performances, stacking
software synthesizers for a huge sound, combining computer with analog
audio, adding additional modulation through controllers, and more; a whole
new world of possibilities for your studio and live performances shall be open
to you.

Where will MIDI lead you?

Enjoy the journey!

https://JeffWhitehead.com
https://CoolLutherie.com
https://CoolLutherie.com
https://CoolLutherie.com

Help for the AMT(P) App page 10 of 10

Important Information
About this application
This application is written in Max, a premier development environment for cross-platform audio applications. It is the
product of the company, Cycling ‘74; therefore, you may refer to the Cycling ‘74 forums to learn more about the Max
environment and applications created in Max. Go to: cycling74.com/forums for more information.

This Audio to MIDI Polyphonic Translator application, AMT(P).app, written by Jeff Whitehead, was compiled within Max 9
to run as a standalone app on a Mac computer and is available as an official distribution only from CoolLutherie.com.

If you have not received this software from CoolLutherie.com then it may not be an official distribution.

Source code and tutorials for audio to MIDI translation are available through CoolLutherie.com and can be modified within
the Max software development environment, a product of Cycling ‘74. (cycling74.com)

Intended Use
The AMT(P) app is a companion program to the open source audio breakout boards designed by Jeff Whitehead Lutherie
LLC, and available as a DIY project through CoolLutherie.com. An audio breakout board separates the output coming
from the divided pickup and sent through a 13-pin cable. The output of each string, as well as the output from the normal
pickups, are sent onward by the breakout board through separate jacks which can be connected to an audio interface.
The AMT(P) app performs polyphonic translation of audio to MIDI notes by analyzing audio streams from the interface.

Download Contents
The archive download for this Mac standalone version includes the following files:

AMT(P).app - this application
AMT(P)_readme.txt - important information about this software

Warranty
THERE IS NO WARRANTY FOR THE SOFTWARE. THE SOFTWARE AND RELATED DOCUMENTATION
ARE PROVIDED "AS IS" AND WITHOUT ANY WARRANTY OF ANY KIND. THE COPYRIGHT HOLDER
AND PROVIDER OF THE SOFTWARE EXPRESSLY DISCLAIMS ALL WARRANTIES, EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE. BY USING THIS SOFTWARE, USER ACKNOWLEDGES AND
AGREES THAT THE USE OF THE SOFTWARE IS AT USER'S SOLE RISK.

License

This software is distributed under the Creative Commons license, CC BY-NC-SA.

To learn how to distribute your work under this license, please refer to:

https://creativecommons.org/licenses/by-nc-sa/4.0/

This license enables reusers to distribute, remix, adapt, and build upon the material in any medium or format for
noncommercial purposes only, and only so long as attribution is given to the creator. If you remix, adapt, or build upon the
material, you must license the modified material under identical terms. CC BY-NC-SA includes the following elements:

BY: credit must be given to the creator, Jeff Whitehead Lutherie LLC, at JeffWhitehead.com
NC: Only noncommercial uses of the work are permitted.
SA: Adaptations must be shared under the same terms.

Adaptations must include the attribution to the original and preceding authors and describe all changes that have been
made to the preceding work.

https://cycling74.com/forums
https://CoolLutherie.com
https://CoolLutherie.com
https://CoolLutherie.com
https://cycling74.com
https://CoolLutherie.com
https://creativecommons.org/licenses/by-nc-sa/4.0/

